Environmental and developmental regulation of the wound-induced cell wall protein WI12 in the halophyte ice plant.
نویسندگان
چکیده
A wounded gene WI12 was used as a marker to examine the interaction between biotic stress (wounding) and abiotic stress (high salt) in the facultative halophyte ice plant (Mesembryanthemum crystallinum). The deduced WI12 amino acid sequence has 68% similarity to WUN1, a known potato (Solanum tuberosum) wound-induced protein. Wounding, methyl jasmonate, and pathogen infection induced local WI12 expression. Upon wounding, the expression of WI12 reached a maximum level after 3 h in 4-week-old juvenile leaves, whereas the maximum expression was after 24 h in 8-week-old adult leaves. The temporal expression of WI12 in salt-stressed juvenile leaves was similar to that of adult leaves. The result suggests that a salt-induced switch from C3 to Crassulacean acid metabolism has a great influence on the ice plant's response to wounding. The expression of WI12 and the accumulation of WI12 protein were constitutively found in phloem and in wounded mesophyll cells. At the reproductive stage, WI12 was constitutively found in petals and styles, and developmentally regulated in the placenta and developing seeds. The histochemical analysis showed that the appearance of WI12 is controlled by both environmental and developmental factors. Immunogold labeling showed WI12 preferentially accumulates in the cell wall, suggesting its role in the reinforcement of cell wall composition after wounding and during plant development.
منابع مشابه
In Silico Characterization of Proteins Containing ARID-PHD Domain and Its Expression in Aeluropus littoralis Halophyte
Abiotic stresses are the most important factors that reduce the yield of crops. In this case, Bioinformatics analysis plays an important role to study genes, and their relatedness as well as prediction their function in response to abiotic stresses. Among all domains, ARID-PHD domain has been identified in plants and animals and has a very significant role in growth regulation, cell cycle, and ...
متن کاملActivation of Lignin Biosynthetic Enzymes During Internodal Development of Aeluropus littoralis Exposed to NaCl
Lignin is one of the major characteristics of plant secondary cell wall that provides structural rigidity for the cells and tissues and hydrophobicity to tracheary elements. Internode tissues of Aeluropus littoralis as a halophyte grass were sampled at different developmental stages (from the first to the fifth internodes ) and under different NaCl concentrations. The influences of NaCl and int...
متن کاملA review on plant peroxidases
Plant peroxidase (EC: 1.11.1.7) a heme-containing protein which is widely used in plants, microorganisms and animals. This two - substrate enzyme, catalyze the hydrogen peroxide into water with oxidation of many organic and inorganic substrates that all of them can be used to measure enzyme activity. Although it’s specific substrate is hydrogen peroxide. Calcium and at least four disulfide bo...
متن کاملRNA-Seq Analysis of the Response of the Halophyte, Mesembryanthemum crystallinum (Ice Plant) to High Salinity
Understanding the molecular mechanisms that convey salt tolerance in plants is a crucial issue for increasing crop yield. The ice plant (Mesembryanthemum crystallinum) is a halophyte that is capable of growing under high salt conditions. For example, the roots of ice plant seedlings continue to grow in 140 mM NaCl, a salt concentration that completely inhibits Arabidopsis thaliana root growth. ...
متن کاملInvolvement of Cytosine DNA methylation in different developmental stages of Aeluropus littoralis
DNA methylation as epigenetic mark plays a key role in normal differential and developmental processes as well as in dynamic gene regulation at the genomic level. To assess DNA methylation pattern in different developmental stages of Aeluropus littoralis, methylation sensitive amplified polymorphism (MSAP) was used. Methylation and demethylation status at the CCGG recognition site were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 127 2 شماره
صفحات -
تاریخ انتشار 2001